Manipulatoravto.ru

Обзор техники для вашей стройки
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплопроводность силикатного кирпича

Силикатный тёплый кирпич

Теплопередача и паропроницаемость ограждающих конструкций из газобетона с облицовкой из силикатного кирпича

Ограждающие стены из газобетона с облицовкой из силикатного кирпича, поэтажно опирающиеся на перекрытие, широко приме­няются в конструкциях монолитных и каркасно-монолитных жи­лых зданий. И сметные расчеты, и практика строительства пока­зали экономическую эффективность и технологичность.

Конструкция ограждающей стены

Коэффициент теплопроводности сухого полнотелого силикат­ного кирпича — 0,56 Вт/(м • ºС), а кладки из него — 0,69 Вт/(м•ºС). Теплопроводность кладки полнотелых керамическихкирпи­чей составляет 0,98 Вт/(м • ºС). Как видно, коэффициент теплопро­водности полнотелого силикатного кирпича меньше коэффициента теплопроводности полнотелого керамического кирпича, значит, тепло он держит лучше. Поэтому для строительства фасадов зданий целесообразно использовать силикатный кирпич, который имеет лучшие теплоизолирующие свойства. Силикатный кирпич пре­восходит керамику, по морозостойкости, и в варианте полнотелой окраски привлекает архитекторов возможностями выразительно­го оформления фасадов.

Газобетон как теплоизоляционный материал получил широкое распространение в каркасно-монолитном строительстве.

Комбинированная конструкция из кирпича и газобетона нахо­дится подвнешними климатическими воздействиями, с одной стороны, и под воздействием пара, возникающего внутри помещений и движущегося наружу, с другой стороны. Стеновые заполнения из газобетона с наружной облицовкой кирпичом выполняют как с воздушной прослойкой, так и без нее.Прослойку используют для предупреждения переувлажнения газобетонногослоя ограждающей стены.

Сопротивление передаче

Требуемое сопротивление теплопередаче

Определим требуемое сопротивление теплопередаче R ˳ᵐᵖжилого здания, например, в Санкт-Петербурге или каком-либо другом районе Северо-Запада с нормальным влажностным режи­мом помещения. При проектировании ограждающих конструкций должны со­блюдаться нормы строительной теплотехники согласно СНиП 11-3-79 «Строительная теплотехника».

Исходя из санитарно-гигиенических и комфортных условий:

Здесь n=1 — коэффициент, принимаемый в зависимости от положения наружной поверхности стены по отношению к наруж­ному воздуху;
tB= 20 O C— расчетная температура внутреннего воздуха со­гласно ТСН 23-340-2003 «Энергетическая эффективность жилых и общественных зданий. Нормативы по энергопотреблению и теплозащите»;
tH= -26 O C— расчетная зимняя температура наружного воз­духа, равная средней температуре наиболее холодной пятидневке с обеспеченностью 0,92;
Dt H =-4 O C — нормативный температурный перепад между тем­пературой внутреннего воздуха и температурой внутренней по­верхности;
aB— коэффициент теплоотдачи внутренней поверхности стены.

Напомним, что число градусо-суток отопительного периода для Санкт-Петербурга будет ГСОП = 7796 o C /сут.. Здесь, согласно СНиП 23-01-99 «Строительная климатология», z= 220 дней — продолжительность периода со средней су­точной температурой меньше 8 градусов С, а 1,8 С — средняя температура этого периода.

В результате получаем значение сопротивления теплопередаче наружных стен, рассчитанное по предписываемому подходу, — 3,08. Выбирая наибольшее значение, окончательно получаем R ˳ᵐᵖ =3,08 м²*ºС/Вт.

Термическое сопротивление ограждающей конструкции

Требуемое сопротивлениетеплопередаче применительно к рас­сматриваемой конструкции стены будет определять лишь мини­мальную толщину теплоизолирующего газобетонного слоя. Вы­бор проектной толщины слоя должен являться результатом тех­нико-экономических расчетов. При этом подход к таким расчетам зависит от задач инвестора и заказчика-застройщика в инвестиционном проекте строительства здания. Если задача заключается в минимизации себестоимости квадратного метра площади, то тре­буется и минимальная толщина газобетона. Если инвестор и заказчик-застройщик исходят из интересов собственника или пользова­теля жилых помещений, то увеличение толщины газобетона следу­ет рассматривать как инвестиционный проект, направленный на экономию теплопотерь. Для расчетов необходимо задаться вопро­сами внутренней нормы рентабельности, прогнозируемой цены на тепловые ресурсы и многими другими.

Ни первая (относительно простая), ни вторая задача не явля­лись целью вопросами работы. Чтобы показать возможность обе­спечения приемлемых характеристик ограждающей конструкции, выберем толщину газобетонной кладки, исходя из сложившейся практики. Толщину кладки силикатного лицевого пустотелого кир­пича определим по его геометрическими размерам, толщину воз­душной прослойки между кирпичем и газобетоном — технологи­ческой реализуемостью.

Н.И. ВАТИН , д. т. н.,проф., зав. кафедрой «Технология, организация и экономика строительства» инженерно-строительногофакультета ГОУ СПбГПУ,Г.И. ГРИНФЕЛЬД ,начальник отдела техническогоразвития

компании « АЭРОК », О.Н. ОКЛАДНИКОВА , инженер ГОУ СПбГПУ,С.И. ТУЛЬКО , генеральный директор Павловского завода строительных материалов

Теплопроводность кирпича

Современный строительный рынок все чаще пополняют новые материалы, восхищающие потребителя качественным исполнением, улучшенными свойствами, обновленными возможностями. Их преимущества над традиционными бесспорны за счет преобладания сразу нескольких характеристик по многим значимым параметрам.

При появлении новых технологий в строительной индустрии не стоит забывать и хорошо проверенные временем стройматериалы. К примеру, кирпичные материалы во все времена относились к востребованным, и никакие факторы не могут повлиять на уровень их популярности. Из них возведено большинство построек, так как они обладают способностью к противостоянию разным климатическим условиям.

С давних времен до сегодняшнего дня эта строительная продукция выдерживает весомые нагрузки, проходит долгое испытание временем. Прочность, долговечность, экологические свойства, водостойкость, морозоустойчивость, звуко- и теплоизоляционные характеристики относят его к ряду лучших стройматериалов.

Что такое теплопроводность?

Одним из весомых свойств является все же теплопроводность кирпича (Т) – возможность пропускать тепло через себя, несмотря на разную температуру. Она указывает на то, до какой степени кирпичная стена теплая, каким образом этот материал способен проводить и передавать тепло.

Керамические изделия используют при возведении несущих стен, перегородок между комнатами, облицовочные – дают возможность придать дому и прилегающему к нему забору аккуратный и достойный вид, презентабельность, создают неповторимый стиль, а также увеличивают тепло в доме. При выборе стройматериала для постройки перекрытий, стен и полов именно такие факторы являются самыми важными.

На вопрос: «Каким же образом определить величину тепловой характеристики?», отвечают эксперты с богатым и длительным опытом работы. Они авторитетно настаивают на том, что многочисленные виды кирпичной кладки детально исследовались в лабораторных условиях. В соответствии с полученными данными выставлен определенный коэффициент теплопроводности кирпича.

Показатели указывают на различные температуры, поскольку тепловая энергия имеет способность постепенного перехода из горячего состояния в холодное. При довольно высокой температуре этот процесс можно увидеть открыто. Высокоинтенсивная передача тепла обусловлена градациями в температуре.

Закон Фурье вкратце

Для более глубокого исследования теплопроводности и теплового потока, с учетом площади поперечного сечения ученым Фурье был выведен специальный закон, показывающий, благодаря чему существующие материалы прекрасно задерживает тепло и улучшают свою изоляцию.

Величина степени переноса теплоты обозначается специальным коэффициентом (КТ) – λ, а тепловая энергия измеряется в Вт. Последняя уменьшает свой уровень при прохождении расстояния в 1 мм с различием температуры на 1 градус. В итоге меньшая потеря энергии выгоднее, а стройматериал с небольшим КТ относится к более теплому.

Теплопроводный параметр большой мерой обусловлен плотностью, при уменьшении ее уровня понижается и тепловой показатель. То есть плотные тяжелые экземпляры обладают повышенным значением Т, а более легкий вес и меньшая прочность указывает на небольшую Т. Для повышения Т влияют на состав материала, его плотность, соблюдение методики изготовления, влаговместимость.

Показатели теплопроводности разных видов кирпичей

Согласно справочным данным теплопроводность силикатного кирпича (сухого) составляет 0,8 Вт/ /м*К , Т кладки из него — 0,7 Вт/м*К. Величина данного параметра у керамического кирпича выше, Т кладки из него — 0,9 Вт/м*К. Следственно, тепловой показатель переноса энергии у силикатного меньше, чем керамического, то есть первый дольше сохраняет тепло, поэтому используется для отделочных работ фасадов зданий за счет лучшего обеспечения теплоизолирующих характеристик.

Теплопроводность пустотелого кирпича — 0,3-0,4 Вт/м*К, то есть потеря тепла выше практически вдвое. Вследствие этого такие постройки требуют дополнительного утепления.

У кирпича облицовочного величина данной характеристики зависит от вида, ведь он подразделяется на керамический, силикатный, гиперпрессованный и клинкерный. Наиболее высокий уровень Т у клинкерного, а низкий – у керамического. Силикатный намного холоднее керамического, а наиболее популярный в этом плане – гиперпрессованный. Чем плотнее и прочнее стройматериал, тем выше уровень его Т.

Красный кирпич имеет теплопроводность, зависящую от технологии его производства. Благодаря достаточной плотности и пустотности от 40% до 50% Т составляет 0,2 – 0,3 Вт/м*К. При такой величине толщина стен может быть значительно меньшей, чем в постройке с силикатным.

Уровень тепловой характеристики у шамотного кирпича является очень важной их всех остальных показателей. Наиболее важно учитывать этот фактор при возведении печей, а также каминов. Свойство быстро отдавать тепло просто незаменимо при желании иметь у себя дома такие виды обогрева.

Как известно, степень передачи тепловой энергии формируют такие различные качественные свойства: вес, объем, влажность, пористость, плотность, влажность, виды добавок. Большое количество пор, содержащих воздух, создает низкий уровень проведения тепла. Для обеспечения тепла в жилище следует выбирать стройматериалы с низким значением КТ, поскольку он непосредственно влияет на выбор технологии утепления стен и отопительной системы.

Итак, каждый вид кирпича имеет свой коэффициент теплопроводности (КТ), измеряющийся в Вт/м°С или в Вт/м*К. Для силикатного, керамического, полнотелого и пустотелого данные указаны выше. Облицовочный (лицевой) керамический имеет достаточно низкий уровень – 0.3 – 0.5, а гиперпрессованный, наоборот, – 1.1. Красный пустотелый — лишь 0.3 — 0.5,«сверхэффективный» – от 0.25 до 0.26, полнотелый – от 0.6 до 0.7, глиняный — 0.56.

Кирпичные изделия от разных производителей имеет отличия физических характеристик. Поэтому строительные работы должны вестись с учетом значений указанных коэффициентов, обозначенных в документации от завода-изготовителя. Перед началом работ следует изучить всю сопутствующую информацию, выслушать рекомендации опытных строителей-специалистов и только потом подготовлено начать задуманное строительство.

Теплопроводность кирпича, сравнение кирпича по теплопроводности

Рассмотрена теплопроводность кирпича различных видов (силикатного, керамического, облицовочного, огнеупорного). Выполнено сравнение кирпича по теплопроводности, представлены коэффициенты теплопроводности огнеупорного кирпича при различной температуре — от 20 до 1700°С.

Теплопроводность кирпича существенно зависит от его плотности и конфигурации пустот. Кирпичи с меньшей плотностью имеют теплопроводность ниже, чем с высокой. Например, пеношамотный, диатомитовый и изоляционный кирпичи с плотностью 500…600 кг/м 3 обладают низким значением коэффициента теплопроводности, который находится в диапазоне 0,1…0,14 Вт/(м·град).

Кирпич в зависимости от состава можно разделить на два основных типа: керамический (или красный) и силикатный (или белый). Значение коэффициента теплопроводности кирпича указанных типов может существенно отличатся.

Керамический кирпич. Производится из высококачественной красной глины, составляющей около 85-95% его состава, а также других компонентов. Такой кирпич изготавливают путем формовки, сушки и обжига, при температуре около 1000 градусов Цельсия. Теплопроводность керамического кирпича различной плотности составляет величину 0,4…0,9 Вт/(м·град).

По сфере применения керамический кирпич подразделяется на рядовой строительный, огнеупорный и лицевой облицовочный. Лицевой декоративный (облицовочный) кирпич имеет ровную поверхность и однородный цвет и применяется для облицовки зданий снаружи. Теплопроводность облицовочного кирпича равна 0,37…0,93 Вт/(м·град).

Читать еще:  Размеры газосиликатных блоков

Силикатный кирпич. Изготавливается из очищенного песка и отличается от керамического составом, цветом и теплопроводностью. Теплопроводность силикатного кирпича немного выше и находится в интервале от 0,4 до 1,3 Вт/(м·град).

Сравнение кирпича по теплопроводности при 15…25°С

КирпичПлотность, кг/м 3Теплопроводность, Вт/(м·град)
Пеношамотный6000,1
Диатомитовый5500,12
Изоляционный5000,14
Кремнеземный0,15
Трепельный700…13000,27
Облицовочный1200…18000,37…0,93
Силикатный щелевой0,4
Керамический красный пористый15000,44
Керамический пустотелый0,44…0,47
Силикатный1000…22000,5…1,3
Шлаковый1100…14000,6
Керамический красный плотный1400…26000,67…0,8
Силикатный с тех. пустотами0,7
Клинкерный полнотелый1800…22000,8…1,6
Шамотный18500,85
Динасовый1900…22000,9…0,94
Хромитовый3000…42001,21…1,29
Хромомагнезитовый2750…28501,95
Термостойкий хромомагнезитовый2700…38004,1
Магнезитовый2600…32004,7…5,1
Карборундовый1000…130011…18

Теплопроводность кирпича также зависит от его структуры и формы:

  • Пустотелый кирпич — выполнен с пустотами, сквозными или глухими и имеет меньшую теплопроводность в сравнении с полнотелым изделием. Теплопроводность пустотелого кирпича составляет от 0,4 до 0,7 Вт/(м·град).
  • Полнотелый — используется, как правило, при основном строительстве несущих стен и конструкций и имеет большую плотность. Полнотелый силикатный и керамический кирпич в 1,5-2 раза лучше проводит тепло, чем пустотелый.

Печной или огнеупорный кирпич. Изготавливается для эксплуатации в агрессивной среде, применяется для кладки печей, каминов или теплоизоляции помещений, которые находятся под воздействием высоких температур. Огнеупорный кирпич обладает хорошей жаростойкостью и может применяться при температуре до 1700°С.

Теплопроводность огнеупорного кирпича при высоких температурах увеличивается и может достигать значения 6,5…7,5 Вт/(м·град). Более низкой теплопроводностью в сравнении с другими огнеупорами отличается пеношамотный и диатомитовый кирпич. Теплопроводность такого кирпича при максимальной температуре применения (850…1300°С) составляет всего 0,25…0,3 Вт/(м·град). Следует отметить, что теплопроводность шамотного кирпича, который традиционно применяется для кладки печей, — выше и равна 1,44 Вт/(м·град) при 1000°С.

Теплопроводность огнеупорного кирпича в зависимости от температуры

КирпичПлотность, кг/м 3Теплопроводность, Вт/(м·град) при температуре, °С
2010030050080010001700
Диатомитовый5500,120,140,180,230,3
Динасовый19000,910,971,111,251,461,62,1
Магнезитовый27005,15,155,455,756,26,57,55
Хромитовый30001,211,241,311,381,481,551,8
Пеношамотный6000,10,110,140,170,220,25
Шамотный18500,850,91,021,141,321,44
  1. Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина и др.; под ред. И. С. Григорьева — М.: Энергоатомиздат, 1991 — 1232 с.
  2. В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2004.
  3. Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976. — 1008 с. строительной физики, 1969 — 142 с.
  4. Михеев М. А., Михеева И. М. Основы теплопередачи. М.: Энергия, 1977 — 344 с.
  5. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  6. Х. Уонг. Основные формулы и данные по теплообмену для инженеров. Справочник. М.: Атомиздат. 1979 — 212 с.
  7. Чиркин В. С. Теплофизические свойства материалов ядерной техники. Справочник.

Какая теплопроводность кирпича?

Физические характеристики строительного материала определяют сферу его применения. Теплопроводность кирпича является важным параметром, который принимается в расчет при сооружении фундамента, перекрытий, внешних стен.

Коэффициент теплопроводности кирпичей

В экономике страны строительная отрасль выделяется как наиболее энергоемкая:

  • 10% энергии потребляют гражданские объекты;
  • 35-45% расходуют сооружения промышленного назначения;
  • 50-55% энергопотребления относится к жилым зданиям.

При проектировании зданий важное значение для строительных конструкций имеют теплоизоляция и тепловая защита. От этого во многом зависят человеческие условия труда и жизни, энергоэффективность строящихся объектов.

Возведение сооружений различного назначения нуждается в правильной оценке влажностного, воздушного и теплового режимов.

Это позволяют разработать специальные методики определения теплофизических параметров стройматериалов и готовых конструкций. Эти методики будут разными для отличающихся материалов изделий.

Теплотехнические показатели по техническим и нормативным документам характеризуются коэффициентом теплопроводности (λ). Для кирпича параметр является показателем того, как изделие передает тепло.

Чем выше значение, тем меньше теплоизолирующая способность. При выборе утеплителя для дома значение λ должно быть как можно меньше.

Коэффициент определяют экспериментальным путем. Это физический показатель, который зависит от давления воздуха, температуры, влажности среды и вещества изделия, плотности и структуры последнего.

Существует формула для определения теплопроводности. В соответствии с ней коэффициент λ прямо пропорционален толщине слоя (в метрах) и обратно пропорционален сопротивлению теплопередаче слоя.

Величина, которую получают при расчетах, используются в проектировании, чтобы сопоставить значение проводимости тепла разных материалов.

Для ограждающих конструкций сопротивление теплопередаче (R0) определяется для зданий и сооружений в соответствии с ГОСТ 26254-84. Для термически однородной зоны оно зависит от:

  1. Сопротивлений передачи тепла наружной и внутренней поверхностей.
  2. Температуры воздуха снаружи и внутри помещения, взятой как среднее значение измерений за расчетный период.
  3. От средней фактической плотности потока тепла за период измерений.

Теплопроводность кладки

По ГОСТ 26254 определяют λ для кирпичных и блочных кладок. Для этого действуют следующим образом:

  1. За время наблюдений определяют показания (средние арифметические) для всех термопар и типломеров.
  2. Для поверхностей кладок, которые находятся внутри и снаружи зданий и сооружений, вычисляется средневзвешенная температура по результатам испытаний. Принимается в расчет площадь растворных швов горизонтального и вертикального участков, а также площадь тычкового и ложкового участков.
  3. Определяют для кладки термическое сопротивление.
  4. Коэффициент теплопроводности кладки вычисляется по значению термического сопротивления.

Расчет

Теплопроводность кладки прямо пропорциональна ее толщине и обратно пропорциональна термическому сопротивлению.

После проведения испытаний и установления точных значений сопротивления теплопередачи нетрудно рассчитать величину теплопроводности стены, состоящий из несколько слоев.

Для этого нужно определить λ для каждого слоя отдельно и суммировать полученные значения.

Уменьшение коэффициента теплоотдачи стены

Существует несколько способов, которые позволяют снизить тепловые потери.

Технологии укладки

Воздушные зазоры делаются в кирпичной кладке для уменьшения накопления влаги в стенах и снижения коэффициента теплоотдачи.

Прослойку воздуха в стенах правильно обеспечивают следующим образом:

Постоянная циркуляция по каналам воздуха внутри кладки возможна, если она на последнем ряду не закрывается перекрытием из любых стройматериалов или стяжкой из раствора.

Для частного строительства важно, чтобы, не понеся больших расходов, добиться от кирпичной стены существенного снижения коэффициента λ.

Утепление здания

Дополнительная теплоизоляция строительных объектов способствует повышению их энергоэффективности. Утеплитель может располагаться изнутри и снаружи зданий.

Материал теплоизолятора крепится к стенам дюбелями и клеем, скобами и шурупами с использованием обрешетки и без. Полимерные штукатурные и пеновые смеси могут наноситься с применением армирующей сетки.

Для наружного утепления производятся сборные изделия: термоблоки, вентилируемые фасады, закрепляющиеся к стенам с помощью специальных конструкций.

Недостатки теплоизоляции штукатуркой снаружи:

  1. При частой смене температуры воздуха на границе сред, образуемых элементами утеплителя и стеной, создается зона повышенной влажности. Это важно учитывать для недостаточно толстых слоев штукатурки, сделанной по металлической, стеклотканевой или полимерной сетке.
  2. На 3-4 году эксплуатации отделка фасада начинает разрушаться. Раствор выдерживает в среднем около 50 циклов смены тепло-холод.
  3. На здоровье проживающих в доме может плохо влиять поражение конструкций грибком и плесенью.

Разные системы теплоизоляции способны нарушить паропроницаемость конструкции. Это часто вызывает образование между слоями фасада, штукатуркой и утеплителями конденсата. Он снижает срок службы изоляции и отделки, приводит к разложению пенополистиролов с выделением ядовитых веществ.

Что обозначает показатель

Холодная область материала постоянно получает тепло из более теплых частей. Их этот процесс движения тепла осуществляется через электромагнитные взаимодействие на уровне квазичастиц, электронов и атомов.

Физический смысл показателя теплопроводности — какое за единичный интервал времени через единицу площади сечения проходит количество теплоты.

В зависимости от коэффициента теплопроводности ГОСТ 530-2012 разделяет эффективность складки на следующее виды:

  • малоэффективная (обыкновенная) — от 0,46 и выше;
  • условно-эффективная — 0,36-0,46;
  • эффективная — 0,24-0,36;
  • повышенная — 0,2-0,24;
  • высокая — меньше 0,2.

Исходя из состава для кладочных смесей величину теплопроводности в инженерных расчетах выбирает от 0,47 и выше.

Нужный температурный режим лучше поддерживается при использовании стройматериалов с высокой теплоемкостью. Этот параметр характеризует, сколько нужно количества тепла, чтобы за единицу времени нагреть объект до заданной температуры. Единицами измерения показателя являются Дж/0С, Дж/К.

Свойства различных типов

Разные строительные материалы отличаются способностью проводить тепло, которая зависит от следующих параметров:

Красный керамический

Мелкозернистая глина является при производстве керамического кирпича основным компонентом. В готовую продукцию также входят вода, песок и улучшающие начальное качество сырья присадки.

Изделия меньше растрескиваются, когда в их состав входит более эластичный раствор, качество которого модифицируют с помощью пластификаторов.

Для керамического кирпича хорошая морозостойкость является основным достоинством. Он способен выдерживать 250-300 циклов замораживания и оттаивания.

Красный кирпич из керамики российского производства имеет толщину 6,5 см и 25 см в длину. Для двойного толщина составляет 13,8 см, 8,8 см — для полуторного.

У пустотелых и полнотелых изделий будет разная величина объемного веса. Построенная из кирпича конструкции будут характеризоваться теплопроводностью тем ниже, чем более пористый материал был использован при строительстве. Для полнотелого кирпича показатель пустотности не может составлять более 30%.

Чтобы внутри изделия образовались пустоты, используется «шихта» — торф, крошки угля, опилки, солома мелко порубленная. Ее добавляют в массу глины. Пустоты образуются, когда добавки выгорают при спекании глины в печах с 1000°С температурой.

По показателю плотности кирпич делится на 7 категорий — от 2,4 до 0,7. Каждый класс изделия обладает собственной теплопроводностью.

0,6-0,7 — коэффициент теплопроводности для изделий с цельной структурой. Для пустотелых — 0,5-0,25 Вт/м*0С.

Несущие стены не делают из пустотелых материалов, поэтому чаще всего они нуждаются в дополнительном утеплении.

Клинкерный

Этот тип кирпича получают из смеси силикатов и минералов, воды, тугоплавкой измельченной глины, которую обрабатывают после формовки при высокой температуре (до 13000). Для этого используют тоннельные печи.

Читать еще:  За и против: кирпич в интерьере

При соблюдении технологии производства получается продукт без мелкодисперсионных пор с высокой прочностью, натуральных оттенков. Параметры готовых изделий определяются ГОСТ 530-2012.

Клинкерный кирпич чаще всего получается с точной геометрией. Для повышения теплоизоляционных качеств и облегчения веса конечной конструкции он выполняется пустотелым.

  1. Морозостойкость более 100 циклов.
  2. Минимальная марка прочности М250.
  3. 1500 кг/см3 — наименьший показатель плотности.
  4. Высокая огнестойкость, устойчивость к биологическим угрозам, воздействию ультрафиолета.
  5. 6% — максимальное водопоглощение.
  6. Коэффициент теплопроводности — 1,15Вт/м*0С.

Характеристика шамотного

Этот вид кирпича делают из специальной глины — желтого шамота. Получаемые изделия являются жаростойким материалом, который в сложных условиях высоких температур даже под высоким давлением способен сопротивляться деформациям. Длительный контакт с открытым огнем спокойно им переносится.

Оксид алюминия является главным веществом, которое входит в огнеупорную смесь. Он обеспечивает кирпичу устойчивость к агрессивным средам и высокую прочность при механических воздействиях.

Материал делят на 8 групп по показателям пустотности. Максимальное значение — 85%, минимальное — 3%. Чем меньше удельный вес изделия, тем ниже прочностные характеристики.

Изготовленный в соответствии с государственными стандартами стройматериал обладают следующими показателями:

Силикатный

Материал получают под давлением 12 атм. и температуре 200°С автоклавным методом. В его состав входят, кроме модифицирующих добавок, извести, кварцевый песок в соотношении 1 к 9.

Стойкие к щелочи пигменты, которые добавляют в сырье на этапе прессования, помогают сделать цветные варианты изделий.

ГОСТ379-95, 379-2015 определяют требования к силикатному кирпичу. 15-31% составляет показатель пустотности. Вес изделий — от 3,2 до 5,8 кг.

  • 1450 кг/м3 — для пустотелого кирпича марки М150;
  • 1700-2100 кг/м3 — для полнотелого М150-200.

Теплопроводность пустотелых силикатных изделий составляет 0,56-0,81 Вт/м*0С, и 0,65-0,88 — для полнотелых.

Какая теплопроводность изделий

Для анализа теплопроводности изделий из кирпича принимается во внимание закон Фурье. Разница температур оказывает влияние на показатели, которые определяет тепловой поток.

Применяемые для отделки фасадов силикатные кирпичи имеют тепловые параметры ниже керамических. Поэтому изделия из силикатных материалов более теплые при одинаковых размерах конструкций.

Изделия из красного пустотелого керамического кирпича имеют коэффициент теплопроводности 0,56.

На показатели готовых зданий сооружений и влияет качество кладки. Важно, чтобы применяемые кладочные растворы были нежирными. Плотность слоя должна быть не больше 1800кг/м3 и минимальной толщины.

Теплотехнические расчеты и требуемая несущая способность определяют то, какая толщина несущей стены будет в здании. Чтобы удовлетворять современным требованиям при реконструкции домов, построенных в советское время, толщину их стен нужно сделать около 1 м. Это не может быть рентабельным, поэтому используют различные системы утепления.

Если утепляющая часть стены и сочетается с каменной, конструкция получается слоистой, то такую укладку называют эффективной. Ее часто применяют в малоэтажном строительстве, для увеличения полезной площади помещений и снижения затрат на материалы.

Что влияет на показатели

Теплопроводность стройматериала — способность сквозь свою толщину передавать тепло и стационарные внутренние процессы, происходящие внутри него при этом. Тесный контакт является обязательным условием для передачи теплоты от 1 объекта к другому, поэтому в чистом виде теплопроводность имеют только твердые тела.

На показатель λ оказывает влияние:

  • влажность;
  • температура;
  • пористость;
  • формы и структура пор;
  • фазовый состав влаги;
  • плотность.

Сильно снижает теплопроводность наличие замкнутых и мелких пор. Снижают эффективную теплоизоляцию конвективные потоки воздуха, которые возникают в сообщающихся между собой крупных порах. Ориентация, размер и форма пор важны для теплопередачи.

Входящие в состав материала вещества своей химической природой определяют способность удерживать тепловую энергию. Величина λ тем меньше, чем слабее связаны между собой образующие кристаллическую решетку вещества атомные группы или тяжелые атомы.

Кирпич: силикатный или керамический?

Для профессиональных строителей этот вопрос может показаться отчасти наивным, но для застройщиков, желающих всё тщательно «взвесить» и вникнуть во все нюансы строительных материалов, он является очень важным. Тем более что рынок буквально наводнили советчики-дилетанты.

Сначала о происхождении материалов. Сырьём для силикатного кирпича служат кварцевый песок, молотая негашёная известь и добавки, в том числе красящие. Основу керамических изделий составляет глина. История кирпича керамического насчитывает не одно тысячелетие, а силикатному аналогу – чуть более ста лет. Метод его производства был запатентован в 1880 г. В. Михаэлисом, после изобретения в 1879 г. Ч. Чемберлендом автоклава для пропаривания под давлением.

Таким образом, силикатный кирпич получается в результате автоклавного твердения заготовок (изготовленных полусухим прессованием) под давлением 8-15 атмосфер и при t=175-200°С. Кирпич керамический, после пластического формования, проходит многоступенчатый длительный обжиг в печах, при t=870-1200°С. Глиняное сырьё, перед замесом, тщательно очищается и измельчается. Полный цикл изготовления кирпича керамического — более недели, а кирпич силикатный можно сделать всего за сутки.

Из сказанного видно, что для производства керамического кирпича потребуется значительно больше времени и энергии, а значит и дорогостоящего оборудования. Его более высокая цена (примерно на 30-50%) оправдана. Однако когда мы сравним технико-эксплуатационные качества двух материалов, вы увидите, что ценовой «выигрыш» кирпича силикатного уйдёт на второй план.

Керамический кирпич

И керамический, и силикатный кирпич могут быть как полнотелыми, так и пустотелыми, рядовыми (строительными) и лицевыми. Однако если говорить о возведении стен, область применения силикатного кирпича сильно ограничена: он не допускается, в соответствии со СНиП 11-22-81, для возведения таких элементов зданий как фундаменты, подвалы, цокольные этажи и стены помещений с мокрым режимом. Также недопустим силикатный кирпич для печей, каминов и дымоходов (гидросиликаты разлагаются уже при t=800°C), для их кладки и облицовки используется только полнотелый керамический кирпич.

Первый запрет связан с высокой естественной влажностью (16-18%) силикатного кирпича и его высоким водопоглощением (в среднем, 10% у полнотелого и 13% у пустотелого). Водопоглощение самого обычного керамического кирпича составляет 6-13%, а отдельные его виды, например, клинкер, отличаются минимальным водопоглощением 2-3%. От водопоглощения напрямую зависит и морозостойкость кирпича (сколько циклов замораживания и оттаивания выдержит материал без изменения прочности).

Кстати, этот коэффициент основополагающий для Северо-Запада России, климат которого характеризуется частыми знакопеременными скачками температур. А от морозостойкости зависит и долговечность, например, фасадной кладки дома. И чем данный коэффициент выше, тем дольше будет служить облицовочный кирпич. Морозостойкость силикатного кирпича составляет 25-35 циклов (редко повышенной морозостойкости F50), тогда как у кирпича керамического этот показатель равен 50, а у клинкерных изделий 100 циклам. Бывает, что производители (в рекламе) завышают основные показатели своих изделий, в надежде, что покупатели вряд ли станут их проверять по сопроводительной документации.

От водопоглощения облицовочного материала зависят и его теплоизоляционные свойства. Так, при намокании стены, например, от обыкновенного дождя, который не редкость в России, теплозащитные свойства силикатного кирпича уменьшаются в разы. Поэтому данный материал характеризуется нестабильными теплоизоляционными свойствами. Коэффициент теплопроводности сухого силикатного кирпича (0,4-0,7 ВтМ*К), однако в реальных условиях он очень высок (0,56-0,95 ВтМ*К) по сравнению с облицовочной керамикой (0,34-0,57 ВтМ*К), значит, и тепло будет дольше удерживаться в доме, облицованном керамическим кирпичом. Увеличить теплоизоляционные свойства кирпича можно, уменьшая его плотность, то есть пустотность.

Силикатный кирпич, по большей части, выпускается полнотелым, плотностью 1800-1900 кгм3, хотя ряд предприятий освоили его выпуск с несквозными технологическими отверстиями (15-30%), плотностью 1500-1550 кгм3. Пустотелый керамический кирпич ( выпускается с пустотностью 40-55% и плотностью 1150-1200 кгм3. Естественно, что нагрузка и затраты на фундамент будет больше, в случае применения силикатного кирпича для облицовки наружных стен. Кроме того, с точки зрения экологии жилья керамика предпочтительнее, так как это дышащий материал. Паропроницаемость керамического кирпича составляет порядка 0,16 мгм*ч*Па, а у кирпича силикатного всего 0,05 мгм*ч*Па. При таких значениях паропроницаемости во многих стеновых «пирогах» потребуется воздушный зазор, что повлечёт за собой увеличение ширины фундамента и потребует высокой квалификации рабочих.

Керамический облицовочный кирпич, напротив, имеет ещё и способность быстро высыхать после дождя, поэтому ему не страшны ни гниение, ни плесень. Индекс изоляции воздушного шума для силикатного кирпича составляет 50-51 дБ, а у керамического он несколько ниже — 45-46 дБ, что соответствует требованиям звукоизоляции СНиП 23-03-2003 «Защита от шума».

Силикатный кирпич

Одна из важнейших характеристик облицовочного материала – его прочность и износостойкость. Керамический кирпич отличается наиболее высокой прочностью и удивительной стойкостью к неблагоприятным, в том числе агрессивным, воздействиям окружающей среды, по сравнению с кирпичом силикатным. То же самое можно сказать о пожаробезопасности и огнестойкости. Силикатный кирпич имеет низкую жаропрочность (разрушается), а его показатель огнестойкости равен 2-3 часам. Керамический кирпич способен противостоять распространению огня в течение 4-6 часов.

Теперь об ассортименте: кирпич силикатный выпускается одинарного (250х120х65 мм) и утолщённого (250х120х180 мм) размера, в неокрашенном (серовато-белого цвета) или окрашенном в массе (10 оттенков) виде, с гладкой матовой поверхностью. Есть ещё типоразмер камень (250х120х138 мм). Кирпич керамический, помимо одинарного и полуторного, выпускается двойного и евроразмера. Что касается разнообразия и декоративных качеств, предлагаемых современным рынком вариантов керамического кирпича, то их такое изобилие, что у неискушённого покупателя просто «голову закружит»! Особенно, если посмотреть на богатство оттенков и фактур коллекций кирпича ручной формовки. Очень важно, что керамику отличает естественное происхождение цветов, получающееся путём смешения глин разных пород и технологическими секретами, известными только мастерам обжига.

Всё многообразие облицовочной керамики (лицевого кирпича европейских и российских производителей) можно увидеть и приобрести в компании «Славдом».

Силикатный кирпич (камень): размеры, свойства, достоинства и недостатки, стоимость | Строительные материалы

Силикатный кирпич – автоклавный строительный материал из извести и кварцевого песка в форме прямоугольного параллелепипеда с размерами 265х120х65 (и др.), применяющий как конструктивный и ограждающий элемент (рядовой кирпич) или облицовочный (лицевой кирпич).

Общая информация

Состав: 90% песка, 10% извести + добавки.

Способ изготовления: Известково-песчанную массу, состоящую из песка, извести и воды прессуют, а затем помещают в автоклав, где под действием насыщенного пара температурой 170-200⁰ и давлением 8атм. образуется прочное силикатное соединение. Для придания кирпичу цвета отличного от белого добавляют специальные добавки-красители, получая при этом кирпич различных цветов. Также используют добавки-модификаторы усиливающие морозостойкость и прочность кирпича.

Разновидности по структуре: пустотелый и полнотелый.

Читать еще:  Какой кирпич нужен для кладки печи

По области применения: рядовой и лицевой.

Размеры и форматы: одинарный — 250х120х65 мм; полуторный — 250х120х88 мм; двойной (камень силикатный) — 250х120х138 мм.

Марка по прочности: М-75, М-100, М-125, М-150, М-175, М-200, М-250, М-300 (по ГОСТу)

Марка по морозостойкости: F15, F25, F35; F50 (по ГОСТу). Современный силикатный кирпич может иметь марку F75; F100

Теплопроводность: 0,35..0,70 Вт/м°С (по ГОСТу) Теплопроводность силикатных кирпичей находится в линейной зависимости от плотности кирпича и не зависит от кол-ва и расположения пустот (ГОСТ 379-95).

Плотность: 1400-2100 кг/м3

Влагопоглощение: 8-12%

Вес: 3,5-5 кг

Цена: 5-30 руб./шт. (в зависимости от назначения и тех. показателей кирпича)

Достоинства: экологичность, хорошая звукоизоляция, дешевле аналогов из керамики, хорошая геометрия, для лицевого силикатного кирпича богатая цветовая гамма и различные фактуры поверхности

Недостатки: высокая теплопроводность, высокое водопоглощение, пониженная жаростойкость, пониженная химическая стойкость, деформативность ( СНиП II-22-81 п.3.26 )

Где стоит использовать: Рядовой кирпич используется для возведения стен и перегородок. Широкое применение получил лицевой цветной и фактурный силикатный кирпич для отделки фасадов зданий.

Где не стоит использовать: Не допускается применение силикатного кирпича для фундаментов, цоколей, наружных стен подвалов. Также ограничение действует на стены помещений с мокрым режимом эксплуатации. В связи с низкой жаростойкостью применение силикатного кирпича не допускается при кладке печей, каминов и дымоходов.

Действующий ГОСТ на 2014 год: ГОСТ 379-95 .

Теплопроводность кирпича силикатного: обзор одного из основных свойств изделий

Силикатный кирпич нельзя назвать изделием новым. Однако определенный набор свойств и качеств помогает ему удержаться в списке лидеров по использованию в строительной сфере.

В данной статье мы будем рассматривать одно из свойств, важное для любого стенового материала, которое непосредственным образом влияет на способность будущего здания к сохранению тепла. Итак, теплопроводность кирпича силикатного: что это такое, и каковы ее числовые значения?

Что представляет собой силикатный кирпич

Для начала, давайте разберемся, что собой представляет данный материал.

Силикатный кирпич: состав и основные свойства

Силикатные кирпичи – изделия, изготовленные из смеси песка, извести и воды. Также при производстве используются шлак, зола и иные взаимозаменяемые компоненты.

Состав сырья непосредственно влияет на итоговые характеристики изделий, приуменьшая либо наоборот, преувеличивая их.

Ориентировочный состав силикатного кирпича

Основные требования к изделиям изложены в следующей технической документации:

  • ГОСТ 379-95 Кирпичи и камни силикатные
  • ГОСТ 23421-79 Устройство для пакетной перевозки силикатного кирпича
  • СНиП 3.03.01-87 Несущие и ограждающие конструкции

Рассмотрим таблицу, отражающую основной набор свойств и качеств изделий. Таблица 1. Характеристики силикатного кирпича:

Числовое значение марки прочности варьируется в пределах от 75 до 300.

Виды материала и область применения

Силикатный кирпич имеет несколько классификаций, основанных на тех или иных свойствах и факторах. Рассмотрим их более подробно.

В соответствии с составом компонентов, материал бывает:

  • Известково-зольный, содержащий в себе золу в количестве 75-80% и известь, в количестве – 20-25%.
  • Известково-шлаковый. Характеризуется наличием в составе легкого шлака вместо песка, совмещенного с известью.
  • Известково-песчаный. Наиболее популярный на производстве вариант. Такие изделия содержат песок и известь. Причем первый, в количестве — до 93%.

В соответствии с ГОСТ, стандартным размером кирпича является- 250*120*65, именуют такие изделия — одинарными.

Одинарный кирпич

Также возможен выпуск утолщенного варианта, толщиной в 88 мм. В конструкционном отношении, силикатный кирпич может быть полнотелым и пустотелым. Полнотелые изделия – более тяжелые по массе, более прочные и обладающие большим коэффициентом теплопроводности.

Полнотелый кирпич

Пустотелые, в свою очередь, могут быть представлены в нескольких вариантах, в зависимости от количества пустот, их формы и доли объема:

  • 14-пустотные изделия. Диаметр пустот – 30-32 м, пустотность -28-30%;
  • 11-пустотные изделия. Диаметр пустот -27-32 мм, пустотность – 20-25%;
  • 3-пустотные изделия. Диаметр пустот – 52 мм, пустотность-15%.

Обратите внимание! ГОСТ допускается выпуск и иных вариантов изделий, при этом обязательно соблюдение всех технических требований к основным показателям, таким как теплопроводность, морозостойкость, прочность.

Наличие пустот влияет на коэффициент теплопроводности, а также на расход раствора при возведении стены.

В соответствии с назначением, силикатный кирпич может быть:

  • Рядовой;
  • Лицевой.

Первый вид используется при возведении стен и перегородок. Нуждается в последующей отделке. Технической документацией допускается шероховатость поверхности, наличие небольшого процента сколов и отбитостей.

Облицовочный, или лицевой кирпич, отличается особо строгими требованиями к внешнему виду. Поверхность его – гладкая, декоративная, может иметь фактуру. Такой кирпич должен обладать двумя декоративными сторонами — тычковой и ложковой, однако наличие одной – допускается по договоренности с потребителем.

Кирпич силикатный облицовочный фактурный

В зависимости от цвета, кирпич выделяют:

  • Окрашенный;
  • Неокрашенный.

Неокрашенные изделия имеют белый либо слегка сероватый оттенок. Окрашенный – колеруются после затвердения, либо на стадии замеса раствора, путем добавления красителей.

В целом, у силикатного кирпича достаточно широкая сфера применения. Его используют при:

  • Мало- и многоэтажном строительстве, возведении производственных и жилых зданий, садовых домиков;
  • Устройстве вентканалов;
  • Возведении перегородок, заборов и многое другое.

Исключается возможность использования материала при строительстве цоколя, более приемлемым вариантом считаются керамические изделия.

Понятие теплопроводности и ее показатель у силикатного кирпича

Поскольку в общих характеристиках мы уже разобрались, пришло время перейти непосредственно к теме статьи. Рассмотрим, что такое коэффициент теплопроводности силикатного кирпича.

Способность силикатного кирпича к сохранению тепла

Теплопроводность – это способность материалов (изделий) к сохранению температуры. Чем он ниже, тем выше эта способность. В будущем, низкий показатель может способствовать экономии на утеплении строения и его отоплении.

В целом, при учете соотношения коэффициента теплопроводности силикатного кирпича и его плотности, показатель достаточно конкурентный, однако, если рассматривать данные свойства по отдельности, то многим материалам он уступает.

Рассмотрим, при помощи каких приемов, можно увеличить способность к сохранению тепла:

  • При использовании специализированных добавок можно добиться процентного увеличения воздушных пор по отношению к общей массе, при этом плотность будет уменьшена;
  • Возможно формирование в теле изделия искусственно созданных пустот, которые приведут к снижению веса и теплопроводности;
  • Возможно также применение теплоизолирующего покрытия лицевой части изделия, а также гидрофобной добавки.

Стоит обратить внимание на то, что чем плотнее кирпич, тем меньше его процент водопоглощения. Последнее также влияет на коэффициент теплопроводности. При эксплуатационной влажности он повышается.

На заметку! В качестве наполнителя, при изготовлении силикатного кирпича иногда применяется керамзитовый песок. Он не только придает изделиям светло кофейный цвет, но и значительно повышает способность к сохранению температуры.

А теперь рассмотрим при помощи таблицы, как изменяется теплопроводность разных марок кирпича силикатного.

Таблица 2. Показатели свойств кирпича в зависимости от прочности:

Наименование показателяКирпич силикатный полнотелый М125Кирпич силикатный полнотелый М150Кирпич силикатный полнотелый М200
Прочность на сжатие кг/см2135-145150-185215-2560
Морозостойкость30-4035-5035-50
Теплопроводность0,60,650,7
Водопоглощение8,3%7,2%8-9%
Масса в сухом виде3,73,7-3,83,8-4,0

Способность будущего здания к сохранению тепла будет увеличиваться при большей толщине стены. Так, например, при ее толщине, равной 20 см, теплопроводность будет составлять 4,5, а при 90 см, она будет уменьшена до 1,4.

Понижают данный коэффициент и при помощи утепления конструкции, но об этом поговорим несколько позже.

Сравнение теплопроводности силикатного кирпича с другими стеновыми материалами

А сейчас давайте сравним теплопроводность силикатного кирпича с другими видами изделий, предназначенных для возведения стен.

Таблица 3.Кирпич силикатный: теплопроводность, плотность, прочность и сравнение этих показателей с другими материалами:

Наименование материалаПлотность кг/м³Прочность МПаТеплопроводность Вт/м·°С
Силикатный кирпич1800-19007,5-15В среднем – 0,7
Газоблок300-12001,5-7,50,09-0,34
Пеноблок300-12001,5-50,08-0,32
Керамзитобетон400-20007,5-10От 0,14
Керамический кирпич1550-19007,5-10От 0,45

Как видно, соотношение плотности, прочности и теплопроводности материала достаточно хорошее. Ячеистые бетоны, разумеется, в лидерах, однако плотность их значительно ниже.

Кирпич силикатный коэффициент теплопроводности, сравнение

Перечень материалов, пригодных для утепления стен из силикатного кирпича

Как уже говорилось, понизить коэффициент теплопроводности силикатного кирпича и будущей стены можно при помощи технически верно выполненного утепления поверхности.

Рассмотрим, какие материалы можно использовать, и как происходит процесс работ. Утепление стены из силикатного кирпича можно производить при помощи нескольких материалов.

Воспользуемся таблицей. Таблица 4. Стены из силикатного кирпича: утепление при помощи различных материалов.

Из плюсов можно выделить:

  • Малый вес;
  • Простота в монтаже;
  • Невысокая цена;
  • Возможность фиксации своими руками;
  • Экологичность;
  • Биологическая устойчивость;
  • Паропроницаемость;
  • Высокие эксплуатационные характеристики.

Основные минусы сводятся к следующему:

  • Невысокая стоимость;
  • Быстрый монтаж;
  • Легкий вес;
  • Устойчивость к влаге;
  • Материал не дышит;
  • Изделия подвержены горению, при этом выделяются вредные вещества;

Обратите внимание! При утеплении строения пенопластом, специалисты советуют делать внутреннюю отделку герметичной.

Сложность также заключается в нанесении, так как смесь очень быстро схватывается.

Видео в этой статье расскажет подробнее о материалах, пригодных для утепления стен из силикатного кирпича.

Преимущества и недостатки строений, возведенных из силикатного кирпича

Силикатный кирпич и строения, возведенные из него, обладают рядом иных преимуществ. Из них можно выделить:

  • Невысокая стоимость изделий;
  • Экологичность материала;
  • Хорошая геометрия изделий;
  • Высокие эстетические качества;
  • Показатель прочности, плотности и морозостойкости – достаточно конкурентные;
  • Звукоизоляционные характеристики;
  • Разнообразие выбора размеров, цветов и производителей;
  • Большое количество вариантов отделки как внешней, так и внутренней;
  • Широкая сфера применения материала;
  • Возможность произвести кладку самостоятельно, для этого понадобится только инструкция.

Что касается теплопроводности, то, скорее, данный показатель можно отнести к плюсам, так как при этом стоит учесть высокую плотность изделий.

Недостатки заключаются в следующем:

  • Материал достаточно тяжелый, особенно, в сравнении с ячеистыми бетонами;
  • Влагопоглощение;
  • В ассортименте продукции отсутствуют декоративные элементы, что не позволяет расширить архитектурные возможности при использовании материала;
  • Ограничение применения в строительстве силикатного кирпича помещений, для которых характерна постоянная влажность. Например, это – баня.

В заключение

Теплопроводность силикатного кирпича нельзя отнести к недостаткам, так как соотношение этого показателя с прочностью и плотностью достаточно приемлемо. Выбирая для строительства дома подобные изделия, и соблюдая технологию при возведении, вы сможете получить в результате практичную постройку с высокими теплоизоляционными и эксплуатационными характеристиками.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector